
Const as a Promise

Copyright © 2019 by Daniel Saks 1

Const as a Promise

(corrected)_

Dan Saks

Saks & Associates

www.dansaks.com

Copyright © 2019 by Dan Saks

1

Uses for const

 To define symbolic constants?

 Yes, but…

 In Modern C++, constexpr is often better.

 To define immutable (never changing) data?

 Yes, but…

 Again, constexpr is often better.

 To prevent modifying a potentially modifiable operand?

 Yes!

 We see this mostly when passing arguments and returning

values by pointer or reference.

 This is the primary use for const in Modern C++.
6

Const as a Promise

Copyright © 2019 by Daniel Saks 2

Using const is Good Hygiene

 Using const turns potential run-time bugs into compile-time

errors.

 As compile-time errors, the bugs are impossible to ignore.

 Consequently, using constproperly helps make interfaces:

 easier to use correctly, and

 harder to use incorrectly.

 Using constexprhelps turn run-time computations into compile-

time computations.

7

Be Proactive

 Unfortunately, too many programmers use const reactively…

 …only in response to compiler complaints.

 Conscientious programmers use constproactively…

 …as they design and code.

 Be conscientious…

Use constproactively.

8

Const as a Promise

Copyright © 2019 by Daniel Saks 3

What Const Sorta Means

 You can use const to define objects of built-in or user-defined

types:

int const number = 8675309; // const int

char const msg[] = "hello"; // array of const char

 A const object is non-modifiable… sorta.

 That is, you can read from it but not write to it:

int n = number; // OK: can read number

number = 2 * n + 1; // no: can't write to number

char c = msg[1]; // OK: can read msg

msg[0] = 'H'; // no: can't write to msg

9

Mandated Initialization

 You can’t write to an existing const object.

 Your only chance to give it a value is when you create it.

 Thus, C++ insists that you must initialize every const object:

namespace example {

int const upper_bound; // error: missing initializer

extern int const limit; // OK: not a definition

int const level = 42; // OK: explicit initializer

}

10

Const as a Promise

Copyright © 2019 by Daniel Saks 4

Constant Expressions

 In C++, the dimension in an array object definition must be an

integer constant expression:

void foo(size_t n) {

int x[n]; // no: dimension must be constant

int y[17]; // OK: dimension is constant

 This is also true elsewhere in C++:

struct foo {

int bf: W; // field width, W, must be constant

~~~

};

11

Constant Expressions

 A constant expression:

 can have operators and multiple operands, but

 must be evaluated at compile time.

 In C++, an integer constant object initialized with a constant 

expression is an integer constant expression:

int const level = 42;   // constant initializer

~~~

int x[2 * level + 1]; // OK: dimension is constant

 Surprisingly, a const object isn’t always a constant expression…

12

Const as a Promise

Copyright © 2019 by Daniel Saks 5

Constant Expressions

 C++ lets you initialize a const object with a non-constant

expression:

int n = 42; // initializer is constant

// but n itself isn't

~~~

int const level = n;    // OK: non-constant initializer

 The program might initialize levelat run time.

 In this case, level is not a constant expression:

int x[2 * level + 1];   // error: level is non-constant

13

Constant Expressions

 You can use constexpr to guarantee compile-time evaluation.

 A constexpr object must be initialized with a constant 

expression:

int n = 42;             // non-constant

~~~

constexpr int max = n; // no: non-constant initializer

~~~

constexpr int min = 2;  // OK: constant initializer

 “constexpr is conster than const.” — Steve Dewhurst

Prefer constexpr to const for defining symbolic constants.

14



Const as a Promise

Copyright © 2019 by Daniel Saks 6

CV-Qualifiers

 Anywhere you can use const, you actually can use either:

 const, or

 volatile, or

 both (in either order).

 Collectively, constand volatile are cv-qualifiers.

 Type conversions involving volatile are very similar to those 

involving const.

 constexpr is not a cv-qualifier.

 You can’t use constexpreverywhere that you can use const.

 And vice versa.

15

Key Insights

 Const objects of arithmetic type are pretty straightforward.

 const is more useful when you combine it with pointers or 

references.

 It also gets more complicated.

 As with much of C++, understanding const is difficult if you can’t 

get past the syntax.

 Here are key insights to help you understand the syntax…

16



Const as a Promise

Copyright © 2019 by Daniel Saks 7

The Structure of Declarations

Insight: Every object and function declaration has two main parts:

 a sequence of one or more declaration specifiers

 a declarator (or a sequence thereof, separated by commas)

 For example:

static unsigned long int *x[N]

declaration specifiers declarator

 The name declared in a declarator is the declarator-id.

17

Declaration Specifiers and Declarators

 A declaration specifier can be:

 a type specifier:

 a keyword such as int, unsigned, long, or double

 a user-defined type, such as stringor vector<int>

 a non-type specifier:

 a keyword such as extern, static, inline, or typedef

18



Const as a Promise

Copyright © 2019 by Daniel Saks 8

Declarator Operators

 A declarator is a declarator-id, possibly surrounded by 

operators.

Insight: In a declarator, the operators group according to the same 

precedence as when they appear in an expression.

19

Precedence Operator Meaning

Highest ( ) grouping

[ ]

( )

array

function

Lowest

unary *

unary &

unary &&

pointer

lvalue reference

rvalue reference

Declarator Operators

*x[N]

 How do you know whether:

 x is “a pointer to an array”?

 x is “an array of pointers”?

 []has higher precedence than unary *.

 So the winner is…

 x is “an array of pointers”!

 More precisely, x is an “array with N elements of type pointer”.

20



Const as a Promise

Copyright © 2019 by Daniel Saks 9

Parentheses in Declarators

 Parentheses serve two roles in declarators:

 As the function call operator:

 These ()s follow the declarator-id.

 They have the same precedence as [].

 As grouping:

 These ()s enclose the declarator-id.

 They have the highest precedence of all.

 For example…

21

Parentheses in Declarators

*f(int)

f is…

“function with…”

“parameter of type int returning…”

“pointer to…”

something

22



Const as a Promise

Copyright © 2019 by Daniel Saks 10

Parentheses in Declarators

grouping

(*f)(int)

f is…

“pointer to…”

“function with…”

“parameter of type int returning…”

something

23

Type vs. Non-Type Specifiers

Insight: Type specifiers modify other type specifiers.

Insight: Non-type specifiers apply directly to the declarator-id.

static unsigned long int *x[N]

 Here, unsigned, long, and int are type specifiers.

 They form the type to which the pointers in array xpoint.

 static is a non-type specifier that applies directly to x.

24



Const as a Promise

Copyright © 2019 by Daniel Saks 11

Declaration Specifier Order

The order of the declaration specifiers doesn’t matter to the 

compiler.

 These two declarations mean the same thing:

unsigned long ul;           // unsigned long

long unsigned ul;           // same thing

 So do these three:

const unsigned long cul;    // const unsigned long

long unsigned const cul;    // same thing

unsigned const long cul;    // same, and we're not amused

25

const is a Type Specifier

const is a type specifier, much like longor unsigned.

constmodifies the other type specifier(s) in the same declaration.

 v is an object of type “array of N pointers to const int”.

26

right interpretation wrong interpretation

const int *v[N] const int *v[N]

int const *v[N] int const *v[N]



Const as a Promise

Copyright © 2019 by Daniel Saks 12

const in Declarators

Insight: constand volatileare the only symbols (in C++) that can 

appear either as declaration specifiers or in declarators.

 In both of these, const is a type specifier:

|
const int | *v[N] // const modifies int

int const | *v[N] // same thing

|

 Here, const appears in the declarator:

|
int | *const v[N] // const modifies the * (the pointer)

|

27

const in Declarators

constappearing to the immediate right of a * in a declarator turns 

the pointer into a “const pointer”.

widget *const cpw // const pointer to...

widget *const *pcpw // pointer to const pointer to...

widget **const cppw // const pointer to pointer to...

28



Const as a Promise

Copyright © 2019 by Daniel Saks 13

const in Declarators

 * and const are separate tokens.

 The spacing around the *doesn’t matter to the compiler:

widget*const cpw // const pointer to...

widget* const cpw // const pointer to...

widget *const cpw // const pointer to...

widget * const cpw // const pointer to...

 However, * followed by const is effectively a single operator —

the “const pointer” operator.

 *consthas the same operator precedence as just *.

29

Declarations That Mean What You Intend

 There’s a simple way to ensure that you’re placing const (or 

volatile) where you want it in a declaration:

 First, write the declaration as it would be without const (or 

volatile).

 Then…

Place const (or volatile) to the immediate right of the type 

specifier or operator that you want it to modify.

30



Const as a Promise

Copyright © 2019 by Daniel Saks 14

Declarations That Mean What You Intend

 For example, suppose we want x to be:

 “array of N const pointers to volatile uint32_t”.

 Start by writing the declaration for:

 “array of N const pointers to volatile uint32_t”…

uint32_t *x[N];

31

Declarations That Mean What You Intend

 Here it is again, with room for the cv-qualifiers:

uint32_t          *      x[N];

 Next, add const to the immediate right of the *:

uint32_t          *const x[N];

 Finally, add volatile to the immediate right of uint32_t:

uint32_t volatile *const x[N];

 Bob’s your uncle!

 x is an “array of N const pointers to volatile uint32_t”.

32



Const as a Promise

Copyright © 2019 by Daniel Saks 15

So What About constexpr?

 Again, these are equivalent:

|
const char | *p

char const | *p

|

 constexpr is a declaration specifier.

 So these are equivalent, too:

|
constexpr char | *p

char constexpr | *p

|

33

So What About constexpr?

 Surprisingly, these are not equivalent:

|
char constexpr | *p

char const | *p

|

 These are:

|
char constexpr | *      p   // constexpr pointer to char

char           | *const p // const pointer to char

|

34



Const as a Promise

Copyright © 2019 by Daniel Saks 16

Type vs. Non-Type Specifiers

 Syntactically, constexpr is not a type specifier.

 It behaves more like a non-type specifier:

constexpr unsigned long int *x[N]

 Here, constexprmodifies x, not the other type specifiers.

 x’s type is as if it were declared as:

unsigned long int *const x[N]

 But the initializer must be a constant expression.
35

Address-Of

 The address-of operator, &, preserves constness:

int i;

int const ci = 42;

~~~

&i // yields "pointer to [non-const] int"

&ci // yields "pointer to const int"

36

Const as a Promise

Copyright © 2019 by Daniel Saks 17

Array-to-Pointer Conversions

 In various contexts, arrays implicitly convert to pointers.

 The array-to-pointer conversion preserves constness:

 “array of [non-const] T” converts to “pointer to [non-const] T”.

 “array of const T” converts to “pointer to const T”.

 String literals, such as "xyzzy", have type “array of const char”.

 They convert to “pointer to const char”.

 Now, let’s look at each way you can place const in a pointer

declaration…

37

const Placement and Meaning

const T *p // [non-const] pointer to const T

T const *p // same

 In this case:

 p is a “[non-const] pointer to const T”

 *p is a “const T”.

 Meaning:

T const x = something;

p = &x; // OK: can modify pointer itself

*p = x; // no: can't modify T that p points to

38

Const as a Promise

Copyright © 2019 by Daniel Saks 18

const Placement and Meaning

T *const p // const pointer to [non-const] T

 In this case:

 p is a “const pointer to [non-const] T”.

 *p is a “[non-const] T”.

 Meaning:

T x, y;

p = &x; // no: can't modify pointer itself

*p = y; // OK: can modify T that p points to

39

const Placement and Meaning

const T *const p // const pointer to const T

T const *const p // same

 In either case:

 p is a “const pointer to const T”.

 *p is a “const T”.

 Meaning:

T const x = something;

p = &x; // no: can't modify pointer itself

*p = x; // no: can't modify T that p points to

40

Const as a Promise

Copyright © 2019 by Daniel Saks 19

Conversions Involving const

 Consider these declarations:

T *p; // pointer

T const *pc; // pointer to const

~~~

void wp(T *q);          // wants pointer

void wpc(T const *qc);  // wants pointer to const

 Clearly, these calls are OK:

wp(p);      // argument and parameter types match exactly

wpc(pc);    // here again

41

Conversions Involving const

 Here are the declarations, again:

T *p;                   // pointer

T const *pc;            // pointer to const

~~~

void wp(T *q); // wants pointer

void wpc(T const *qc); // wants pointer to const

 Now, are these calls OK?

wp(pc); // convert "pointer to const" into "pointer"?

wpc(p); // convert "pointer" into "pointer to const"?

 To answer this…

42

Const as a Promise

Copyright © 2019 by Daniel Saks 20

const as a Promise

Think of constas a promise.

 You can apply ethical reasoning to the semantics of const.

 Imagine a conversation between:

 K: the current Keeper of X, and

 B: the Borrower of X…

43

const as a Promise

 K: “If I give you access to X, can I trust that you won’t change it?”

 B: “Yes, I promise I won’t change X.”

 K: “You understand that I might still be able to change X, and give

others permission to do so as well?”

 B: “Yes, my promise not to change X doesn’t necessarily mean no

one else can change X.”

 K: “You also understand that you can’t weasel out by asking

others to break the promise for you?”

 B: “Yes, I do. I won’t ask others to break my promise.”
44

Const as a Promise

Copyright © 2019 by Daniel Saks 21

const as a Promise

 Let’s apply this to:

T const *qc // pointer to const

 The promise is that:

 The program won’t use any value obtained from qc— directly

or indirectly — to alter any Tobjects.

 This promise doesn’t necessarily apply to any other pointer…

 …even if that pointer happens to have the same value as qc.

45

const as a Promise

 Now, let’s apply this reasoning to calling wp(pc):

T const *pc; // pc is the keeper of access

~~~

void wp(T *q);          // wp borrows access via q, but

~~~                     // q makes no promise

wp(pc); // error: compiler won't trust wp

 Calling wp(pc)provokes a compile error:

 It’s an invalid pointer conversion that loses constness.

 If it compiled, it might allow code within wp to violate the

promise in pc’s declaration.

46

Const as a Promise

Copyright © 2019 by Daniel Saks 22

const as a Promise

 In contrast, calling wpc(p) is OK:

T *p; // p is the keeper of access

~~~                     // it makes no promise

void wpc(T const *qc);  // wpc borrows access via qc

~~~                     // promising to not write to *qc

wpc(p); // OK: violates no promises

 Passing p to wpc (as qc) doesn’t violate any promises.

 The call wpc(p) involves a particular kind of type conversion…

47

Qualification Conversion

 A qualification conversion adds cv-qualifiers to the type to

which the converted pointer points.

 More precisely, a qualification conversion converts:

 an object of type “pointer to CV1 T”

 into type “pointer to CV2 T”,

 where:

 CV1 is either empty, const, volatile, or constvolatile, and

 CV2 is more cv-qualified than CV1.

 That is, CV2 has every qualifier in CV1, plus at least one more.

48

Const as a Promise

Copyright © 2019 by Daniel Saks 23

Qualification Conversion

 Qualification conversions apply in assignments as well as

parameter passing, as in:

T *p;

T const *pc;

T volatile *pv;

~~~

pc = p;     // OK: adds const

p = pc;     // error: loses const

pv = p;     // OK: adds volatile

p = pv;     // error: loses volatile

pv = pc;    // error: adds volatile, but loses const

pc = pv;    // error: adds const, but loses volatile

49

Reference Initialization

 Reference initialization behaves similarly to qualification 

conversions for pointers:

int i = 37;                 // int

int const ci = 42;          // const int

~~~

void wi(int &r); // wants int

void wci(int const &rc); // wants const int

 Clearly, these calls are OK:

wi(i); // binds "ref to int" to "int"

wci(ci); // binds "ref to const int" to "const int"

50

Const as a Promise

Copyright © 2019 by Daniel Saks 24

Reference Initialization

 A reference initialization can increase the constness of the

referenced object.

int i = 37; // int

int const ci = 42; // const int

~~~

void wi(int &r);            // wants int

void wci(int const &rc);    // wants const int

 Thus, this is OK, too:

wci(i);     // binds "ref to const int" to "int"

 It doesn’t break any promises.

51

Reference Initialization

 A reference initialization can’t decrease the constness of the 

referenced object.

int i = 37;                 // int

int const ci = 42;          // const int

~~~

void wi(int &r); // wants int

void wci(int const &rc); // wants const int

 This is not OK:

wi(ci); // no! can't bind "ref to int" to "const int"

 Binding parameter r to cimight break ci’s promise.

52

Const as a Promise

Copyright © 2019 by Daniel Saks 25

Iterators

 A standard library iterator is a generalization of a pointer.

 It’s an object that behaves in many ways just like a pointer:

 An iterator might actually be a pointer.

 Or, it might be a class object with overloaded operators that let

it act like a pointer, primarily:

 unary *

 ++

53

Iterators

 Every standard container defines member types:

 iterator is the type for an object that can “point” to an

element in a container.

 const_iterator is the type for an object that can “point” to an

element in a const-qualified container.

 A const_iterator really behaves like a “pointer to const”…

 Not a “const pointer”.

54

Const as a Promise

Copyright © 2019 by Daniel Saks 26

Iterators

 Conversions between iteratorand const_iterator types mimic

qualification conversions:

#include <deque>

using namespace std;

~~~

deque<int>::iterator i;

deque<int>::const_iterator ci;

~~~

i = ci; // no: drops const from "pointed to" type

ci = i; // OK: adds const to "pointed to" type

55

Using const in Parameter Declarations

 Some ways of placing constare more useful than others.

 Suppose, for some types R and T, you have a function declared as:

R foo(T *p);

 A typical call to foopasses an “array of T”:

T x[N]; // for some positive integer constant N

~~~

foo(x);

 Let’s consider different placements for const in the parameter 

list…

56



Const as a Promise

Copyright © 2019 by Daniel Saks 27

Using const in Parameter Declarations

R foo(T const *p);    // (1)

~~~

foo(x);

 foo can alter p and use p to inspect any element of x:

for (; *p != v; ++p) { // OK

if (*p == one_thing) { // OK

}

}

 However…

57

Using const in Parameter Declarations

R foo(T const *p); // (1)

~~~

foo(x);

 foo can’t use p to change any element of x:

for (; *p != v; ++p) {          // OK

if (*p == one_thing) {      // OK

*p = another_thing;     // error

}

}

 This is a meaningful constraint on foo’s behavior.

 If this is the behavior you want, then this is the way to get it.

58



Const as a Promise

Copyright © 2019 by Daniel Saks 28

Using const in Parameter Declarations

R foo(T *const p);  // (2)

~~~

foo(x);

 Using this declaration for p, foo can’t alter p itself.

 However, it can use p to alter the value of x[0].

 This const is pretty useless, if not deceptive:

 It’s reasonable to expect that const in a parameter list affects

the function’s outward behavior.

 But this constdoesn’t…

59

Using const in Parameter Declarations

R foo(T *const p); // (2)

~~~

foo(x);

 This constconstrains foo’s implementation.

 foo can’t change its own copy of x’s address.

 It doesn’t affect foo’s outward behavior.

 foo can still change the contents of xusing…

60



Const as a Promise

Copyright © 2019 by Daniel Saks 29

Using const in Parameter Declarations

R foo(T *const p) {

T *q = p; // OK: copying const object

while (~~~) {

*q++ = something;   // OK: doesn't break promises

}

}

 Here’s another way to do the same thing:

R foo(T *const p) {

size_t i = 0;

while (~~~) {

p[i++] = something; // OK: doesn't break promises

}

}
61

Using const in Parameter Declarations

R foo(T const *const p);        // (3)

~~~

foo(x);

 This is overkill.

 From the caller’s perspective, it’s the same as:

R foo(T const * p); // (1)

 The rightmost consthas no affect on foo’s outward behavior.

62

Const as a Promise

Copyright © 2019 by Daniel Saks 30

Using const in Parameter Declarations

Declare a pointer parameter as “pointer to const” if the

function shouldn’t alter the “pointed to” object(s).

 Using const in this way imposes a meaningful constraint on the

function’s outward behavior.

 The guideline for reference parameters is similar…

63

Using const in Parameter Declarations

Declare a reference parameter as “reference to const” if the

function shouldn’t alter the referenced object.

 For example, the source operand of a copy should be “reference

to const”:

class widget {

public:

widget(widget const &); // copy constructor

widget &operator=(widget const &);

// copy assignment

~~~

};

64



Const as a Promise

Copyright © 2019 by Daniel Saks 31

Top-Level CV-Qualifiers

 Types in C++ can have one or more levels of composition.

 For example, type “pointer to char” has two levels:

1) “pointer to”

2) “char”

 Type “array of pointer to int” has three levels:

1) “array of”

2) “pointer to”

3) “int”

 Type “string” has just one level:

1) “string”
67

Top-Level CV-Qualifiers

 A cv-qualifier on the first level of a type is called a top-level cv-

qualifier.

 For example, these declarations have top-level cv-qualifiers:

T *const p              // top-level is const

T const *volatile q     // top-level is volatile

 These don’t:

T x                     // no top-level cv-qualifier

T const volatile *p // no top-level cv-qualifier

68



Const as a Promise

Copyright © 2019 by Daniel Saks 32

Top-Level const in Parameter Declarations

 The top-level const in this declaration is pretty useless:

int g(int const i);     // useless const

 With or without the const, calls to this function pass by value:

int n;

~~~

g(n); // copies n to parameter i

 Since the call copies n to i, g can’t alter n.

 Declaring i as const has no effect on n, only on g’s use of i.

69

Top-Level const in Parameter Declarations

 Here’s a common technique used to implement the standard

memcpy function:

void *memcpy(void *d, void const *s, size_t n) {

~~~

for (; n > 0; --n, ~~~) {   // OK

~~~

}

return d;

}

 It tracks the number of bytes remaining to copy by decrementing

parameter n.

70

Const as a Promise

Copyright © 2019 by Daniel Saks 33

Top-Level const in Parameter Declarations

 Declaring parameter n as const precludes using n as a downward

counter:

void *memcpy(void *d, void const *s, size_t const n) {

~~~

for (; n > 0; --n, ~~~) {   // error: n is const

~~~

}

return d;

}

 What do you gain by declaring n const?

71

Top-Level const in Parameter Declarations

 Many places where you can use constare not very useful:

void *const memcpy(

void *const d, void const *const s, size_t const n

);

 There’s only one really useful const in this declaration.

Use constproactively.

 But don’t clutter up your code with useless const.

Avoid using constat the top level of parameter declarations.

72

Const as a Promise

Copyright © 2019 by Daniel Saks 34

73

Const and Class Design

 C++ programs can declare class objects as const.

 Such objects are useful only if the class is designed to support

const objects.

 As an example, consider a rudimentary class that implements

variable-length character strings:

string s = "hello";

s += ", world";

if (s.size() > 10)

~~~

s.clear();

Const and Class Design

 The class definition might look in part like:

class string {

public:

~~~

size_t size();

void clear();

~~~

private:

char *text;

size_t stored_size;

};

74



Const as a Promise

Copyright © 2019 by Daniel Saks 35

Const and Class Design

 When you pass a stringas an argument to a function, passing by 

reference is typically cheaper than passing it by value:

 Passing by reference merely passes the address.

 Passing by value uses the string’s copy constructor to make a 

copy of the entire string.

Declare a reference parameter as “reference to const” if the 

function shouldn’t alter the referenced object.

75

Const and Class Design

R foo(string const &s) {

~~~

for (size_t i = 0; i < s.size(); ++i) {

~~~

 Given the string class as written, this function won’t compile…

76



Const as a Promise

Copyright © 2019 by Daniel Saks 36

Const and Class Design

R foo(string const &s) {

~~~

for (size_t i = 0; i < s.size(); ++i) { // error

~~~

 foo’s parameter s is declared as a “reference to const string”.

 This is a promise that foowon’t change the value of s.

 The compiler complains because it doesn’t see a promise…

 …a promise that calling s.size()won’t modify s.

77

Const and Class Design

 Remember, every non-static class member function has an 

implicitly-declared parameter named this:

class string {

public:

size_t size(string *this);  // implicitly declared

~~~

 If thiswere explicitly-declared, the size function could make the

promise by adding const:

size_t size(string const *this);

 Here’s how you actually do it…

78

Const as a Promise

Copyright © 2019 by Daniel Saks 37

Const Member Functions

 By declaring sizeas a const member function:

class string {

public:

size_t size() const; // const member function

~~~

};

 Syntactically, constmodifies the function call ()s to its left.

79

Const Member Functions

 A const member function won’t compile if it tries to modify a 

member of *this, as in:

size_t string::size() const {

return ++stored_size;       // error

}

 This is good.

 It keeps the promise.

80



Const as a Promise

Copyright © 2019 by Daniel Saks 38

Const Member Functions

 The string::clear function must remain a non-const member.

 It can’t do its job unless it alters data in a string.

 If you try to define it as a const member function, it won’t 

compile:

void string::clear() const {

delete [] text;

text = nullptr;     // no: can't modify text

stored_size = 0;    // no: can't modify stored_size

}

 This is as it should be.

81

Const Member Functions

 It follows from the rules for qualification conversions that:

 A program can apply a const member function to a non-const

object as well as a const object.

 A program can apply a non-const member function only to a 

non-const object.

 Consequently:

 Declaring a member function as const doesn’t force others to 

declare objects as const.

 However, failure to declare a member function as const may 

prevent others from declaring objects as const.

Declare a member function as const whenever meaningful.

82



Const as a Promise

Copyright © 2019 by Daniel Saks 39

The End

Thanks for Listening

83

Not Quite

There’s More

84



Const as a Promise

Copyright © 2019 by Daniel Saks 40

A Curious Flaw

 Let’s add a []operator to our string class.

 It should be a const member so we can use it with a const string:

R foo(string const &s) {

~~~

for (size_t i = 0; i < s.size(); ++i) {

if (s[i] == something) {

~~~

 The compiler interprets s[i]as s.operator[](i).

 The member function definition looks like…

85

A Curious Flaw

class string {

public:

~~~

char &operator[](size_t i) const {

return text[i];

}

~~~

private:

char *text;

size_t stored_size;

};

 Unfortunately, this operator lets us modify a const string…

86



Const as a Promise

Copyright © 2019 by Daniel Saks 41

A Curious Flaw

R foo(string const &s) {

~~~

for (size_t i = 0; i < s.size(); ++i) {

s[i] = something; // oops! compiles anyway

}

 It compiles because operator[] returns a “reference to non-

const”:

char &operator[](size_t i) const {

return pointer[i];

}

 This is illogical…

87

A Curious Flaw

 An element selected from a const string should be const.

 However, operator[] returns the selected element as non-const:

char &operator[](size_t i) const {

return pointer[i];

}

 Why does it even compile?

 Shouldn’t the return expression provoke a compile error for an

invalid reference initialization?

 It doesn’t…

88

Const as a Promise

Copyright © 2019 by Daniel Saks 42

Const is Shallow

 In a const member function, this is a “pointer to const”.

 It’s actually a “const pointer to const”, but let’s not go there.

 What matters is that…

 A const member function adds const only to the top type of each

non-static data member of *this.

 In other words,…

 Const in a const member function is shallow…

89

What We Get

 Inside operator[], thispoints to a class that appear to be:

class string {

~~~

private:

char *const text;           // const pointer to...

// ...non-const char

size_t const stored_size;   // const size_t

};

 The pointer to (the initial character in the) the string is const.

 The characters in the string are not.

90



Const as a Promise

Copyright © 2019 by Daniel Saks 43

What We Want

 To prevent modifications, a const string should appear to be:

class string {

~~~

private:

char const *const text; // const pointer to...

// ...const char

size_t const stored_size; // const size_t

};

 The pointer to (the initial character in the) the string is const.

 The characters in the string are also.

91

Correcting the Flaw

 An element selected from a const string should be const.

 When operator[] is a const member function, it should return

the selected element as “reference to const”:

char const &operator[](size_t i) const {

return pointer[i];

}

 This is logically consistent, but not easy to use correctly…

92

Const as a Promise

Copyright © 2019 by Daniel Saks 44

Correcting the Flaw

 If string’s operator[] is a const member function, it treats all

strings as const.

 It prevents you from modifying characters in a non-const string:

string name {"ben"};

~~~

name[0] = 'B';          // no! [] yields const char

 If you insist on doing the assignment, you must use a const_cast:

const_cast<char &>(name[0]) = 'B';  // usually hazardous

As with all casts, use const_castsparingly.

93

Overloading on Const

 The better solution is to overload on const:

class string {

public:

char       &operator[](size_t i)       {

return text[i];

}

char const &operator[](size_t i) const {

return text[i];

}

~~~

};

 This yields logically consistent behavior…

94

Const as a Promise

Copyright © 2019 by Daniel Saks 45

Overloading on Const

 An element selected:

 from a non-const string should be non-const.

 from a non-const string should be non-const.

 Overloading member functions on const is a special case...

 You can overload functions with const on any pointer or

reference parameter:

R f(T *p); // one pair of...

R f(T const *p); // ...overloaded functions

R g(T &r); // another pair of...

R g(T const &r); // ...overloaded functions

95

Overloading on Const

 A function signature is the information about a function that

participates in overload resolution.

 In general, constappearing in a function’s parameter declaration

is part of the function’s signature.

 For example, each of these functions has a distinct signature:

R f(T *p);

R f(T const *p);

 However, function signatures don’t include top-level cv-

qualifiers from parameter declarations…

96

Const as a Promise

Copyright © 2019 by Daniel Saks 46

When Apparent Overloading Really Isn’t

 For example, these two functions have the same signature:

void f(T const x); // signature = (T)

void f(T x); // same as this

 The same is true for:

void f(T *const p); // signature = (T *)

void f(T * p); // same as this

 In each pair, the second declaration is not an error.

 It’s just a redeclaration of the first function.

97

When Apparent Overloading Really Isn’t

 Just to be clear, this is overloading:

void f(T const *p); // const is not top-level

void f(T *p);

 This is not:

void f(T *const p); // const is top-level

void f(T * p);

 The placement of const in or out of a delarator makes all the

difference.

98

Const as a Promise

Copyright © 2019 by Daniel Saks 47

The End, for Real

Thanks for Listening

99

